Non-stable K-theory and extremally richC⁎-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstable K-theory for Z-stable C-algebras

Let Z denote the simple limit of prime dimension drop algebras that has a unique tracial state (cf. Jiang and Su [11]). Let A 6= 0 be a unital C∗-algebra with A ∼= A ⊗ Z. Then the homotopy groups of the group U(A) of unitaries in A are stable invariants, namely, πi(U(A)) ∼= Ki−1(A) for all integer i ≥ 0. Furthermore, A has cancellation for full projections, and satisfies the comparability quest...

متن کامل

POINTWISE BOUNDED ASYMPTOTIC MORPHISMS AND THOMSEN’S NON-STABLE k-THEORY

In this paper I show that pointwise bounded asymptotic morphisms between separable metrisable locally convex *-algebras induce continuous maps between the quasi-unitary groups of the algebras, provided that the algebras support a certain amount of functional calculus. This links the asymptotic morphisms directly to Thomsen’s non-stable definition of k-theory in the C∗ algebra case. A result on ...

متن کامل

On the independence of K-theory and stable rank for simple C-algebras

Jiang and Su and (independently) Elliott discovered a simple, nuclear, infinite-dimensional C-algebra Z having the same Elliott invariant as the complex numbers. For a nuclear C-algebra A with weakly unperforated K∗-group the Elliott invariant of A ⊗ Z is isomorphic to that of A. Thus, any simple nuclear C-algebra A having a weakly unperforated K∗-group which does not absorb Z provides a counte...

متن کامل

K-theory for operator algebras. Classification of C∗-algebras

In this article we survey some of the recent goings-on in the classification programme of C-algebras, following the interesting link found between the Cuntz semigroup and the classical Elliott invariant and the fact that the Elliott conjecture does not hold at its boldest. We review the construction of this object both by means of positive elements and via its recent interpretation using counta...

متن کامل

The Algebraic K-theory of Operator Algebras

We the study the algebraic K-theory of C∗-algebras, forgetting the topology. The main results include a proof that commutative C∗-algebras are K-regular in all degrees (that is, all their NKi-groups vanish) and extensions of the Fischer-Prasolov Theorem comparing algebraic and topological K-theory with finite coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2014

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2014.04.003